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Electronic band structures and optical
properties of type-II superlattice

photodetectors with interfacial effect

Peng-Fei Qiao,1 Shin Mou,2 and Shun Lien Chuang1,∗
1University of Illinois at Urbana-Champaign, Department of Electrical and Computer

Engineering, 1406 West Green Street, Urbana, Illinois 61801, USA
2Currently with Air Force Research Lab, Wright Patterson AFB, OH 45433, USA

∗s-chuang@illinois.edu

Abstract: The electronic band structures and optical properties of type-II
superlattice (T2SL) photodetectors in the mid-infrared (IR) range are in-
vestigated. We formulate a rigorous band structure model using the 8-band
k · p method to include the conduction and valence band mixing. After
solving the 8× 8 Hamiltonian and deriving explicitly the new momentum
matrix elements in terms of envelope functions, optical transition rates are
obtained through the Fermi’s golden rule under various doping and injection
conditions. Optical measurements on T2SL photodetectors are compared
with our model and show good agreement. Our modeling results of quantum
structures connect directly to the device-level design and simulation. The
predicted doping effect is readily applicable to the optimization of photode-
tectors. We further include interfacial (IF) layers to study the significance of
their effect. Optical properties of T2SLs are expected to have a large tunable
range by controlling the thickness and material composition of the IF layers.
Our model provides an efficient tool for the designs of novel photodetectors.

© 2012 Optical Society of America

OCIS codes: (040.5160) Photodetectors; (040.4200) Multiple quantum well; (160.1890) De-
tector materials; (160.4760) Optical properties.
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1. Introduction

Antimony-based type-II superlattices (T2SLs) have attracted great interest from researchers
due to their wide range of applications in optoelectronic devices for the past decades. Such
periodic quantum structures were first proposed by L. Esaki [1] in 1977 and applied to in-
frared (IR) applications by Smith and Mailhiot [2] in 1987. The broken-gap band alignment in
type-II heterojunctions allows a narrow effective band gap between the quantized conduction
band (CB) and valence band (VB) states. Long optical transition wavelength up to mid-IR (3
μm to 30 μm) becomes achievable for interband transitions without resorting to intersubband
transitions [3]. The type-II material system, a promising candidate for active layer designs in
mid-IR optoelectronic devices, has recently demonstrated room temperature operation in both
interband cascade lasers [4] and photodetectors [5]. Antimony-based III-V compound SLs have
higher growth quality and uniformity than II-VI compounds such as HgCdTe alloys, and a large
reduction of defects is expected. A large tunable range of operation wavelength can be obtained
by varying layer thicknesses rather than precise control of mole compositions. Suppression of
Auger recombination is also predicted in antimony-based T2SLs [6].
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The k · p method [7–10] serves as an efficient model, which covers from material level,
quantum structural level, up to the device level modeling. Despite the loss of atomistic de-
tails [11], this method is desirable for large-scale problems, long wavelength applications, and
device modeling [9,12,13]. The band structure near high-symmetry extremum points (e.g. Γ, X,
L) is solved through the perturbation theory, and the output information is accurate enough for
simulating optoelectronic processes near the semiconductor band gap. The results from the k ·p
method can be readily used for device-level analysis and design. Our previous work has applied
this method for the gain optimization in type-II quantum cascade lasers [9]. The calculated ma-
terial gain spectra, which enter into the rate equations for light-emitting devices, allow for more
accurate modeling of the light output vs. injection current (L-I) curves. We have also analyzed
the T2SL photodetector performance [13] including the quantum efficiency and responsivity,
based on an analytical drift-diffusion model with the input of the calculated absorption spectra.

In this paper, we formulate a rigorous model for band structures and optical properties using
the 8-band k ·p method. We derive the new 8-band momentum matrix elements for TE and TM
polarizations. Our expressions, explicitly derived in terms of the envelope functions, are more
straightforward than those by Szmulowicz [14] (which were expressed in terms of matrices of
operators), and more general than those by Chang and James [15] (which were derived only for
intersubband transitions in the valence band, ignoring the CB-VB mixing). Our results under
the axial approximation [9] significantly simplify the computation and are readily applicable
for modeling optical transitions with CB and VB mixing, while the ab-initio band structure
models are not yet applied for modeling T2SL optical properties and device performance.

One challenge in the k · p modeling is the determination of the input bulk band edge pa-
rameters. The electron effective mass and the Luttinger parameters, which account for the hole
effective masses, become sensitive parameters when modeling narrow gap materials, such as
InAs and InSb [16]. Band edge parameters, which enter into the Hamiltonian formulation, need
to be corrected from experimental values. Such correction is only necessary for the 8-band k ·p
method or beyond, since the CB-VB coupling is already included in the off-diagonal terms in
the 8× 8 Hamiltonian. The Luttinger parameters are also corrected due to the change of the
definition for class-B states (remote bands) in the Löwdin’s perturbation method [17]. In the 6-
band case [18], s-like CB states are considered as “remote bands”, while in the 8-band case [7],
s-like CB states belong to the 8-fold bases in class-A states. We present the correction formulas
and summarize the corrected parameters for commonly used type-II materials.

We verify our model using two different boundary conditions: Dirichlet and Periodic Bound-
ary Conditions (DBC and PBC). Important optical properties such as absorption coefficient and
spontaneous emission rate are calculated and compared with the experimental data. Our theoret-
ical results on absorption and photoluminescence (PL) spectra agree very well with the optical
measurements. The measured quantum efficiency (QE) spectra of a mid-wave and a long-wave
infrared photodetectors [19, 20] serve as verifications of our model. We further demonstrate
the doping-dependence of the T2SL optical properties. The light p-doping does not change the
cutoff wavelength and slightly affects the quantum efficiency. This allows us the freedom to
optimize T2SL detectors using different levels of p-doping.

Another challenge of modeling heterostructures is the determination of the band alignment,
or the commonly used parameter: valence band offset (VBO). Variation in the measured VBO
causes a large fluctuation in the modeled results for narrow-gap materials. The interfacial (IF)
layers formed at the heterojunctions play an important role in the uncertainty of band align-
ments besides experimental errors. Previous modeling work mostly included the IF effect by
adjusting the VBO values or using a graded potential profile. However, these approaches failed
to account for the large IF lattice mismatch and the strain effect on the band structure and the
optical properties. In this paper, we include actual IF layers in our model and demonstrate the
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significance of the IF effect. IF layers are often used to study lattice mismatch and achieve
strain balance [21–24]. Beyond previous studies, we predict with our model that one can obtain
a large tunable range of optical properties by controlling the IF layer type and thickness.

2. Theoretical principles

2.1. The 8-band k ·p method with the effective mass correction

In this paper, the band structure and optical properties of T2SLs are modeled with the 8-band
k ·p method, which is based on the Kane’s formulation [7,10], the Luttinger-Kohn (LK) model
[8, 10] for degenerate bands, and the Pikus-Bir theory [10, 25] for strain effects. Due to the
narrow band gap of type-II materials, it is necessary to use an 8-band coupled Hamiltonian to
include the strong interaction among the 8 bands nearest to the band gap, namely the conduction
band (CB), the heavy-hole (HH), the light-hole (LH), and the spin-orbit split-off (SO) bands,
each with a double spin degeneracy. The 8× 8 LK Hamiltonian built under these 8 bases are
first block-diagonalized into two decoupled 4×4 upper and lower Hamiltonian matrices as [9]

HLK
8×8 =

[

HU
4×4(kt) 0

0 HL
4×4(kt)

]

, (1)

using the basis transformation from Eq. (A-3) to Eq. (A-4). The band structure is generally
anisotropic in the transverse plane and depends on the direction of the transverse wave number
kt . After the axial approximation, the Hamiltonian matrix elements and the envelope functions
depend only on the magnitude of kt . The upper and lower 4×4 Hamiltonians are written explic-
itly in Eq. (A-1). The upper and lower eigen-states of the m- and n-th subbands can be written
as a linear conbination of the new basis functions modulated by the envelope functions g(i) as,

ΨU
m(kt ,r) =

eikt ·rt

√
A

4

∑
i=1

g(i)m (kt ,z))|ui〉,

ΨL
n(kt ,r) =

eikt ·rt

√
A

8

∑
i=5

g(i)n (kt ,z))|ui〉.
(2)

The eigen-energies and eigen-states at a given kt can then be solved from the matrix equation,

HU
4×4(kt)

⎡

⎢

⎢

⎣

g(1)(kt ,z)
g(2)(kt ,z)
g(3)(kt ,z)
g(4)(kt ,z)

⎤

⎥

⎥

⎦

= EU (kt)

⎡

⎢

⎢

⎣

g(1)(kt ,z)
g(2)(kt ,z)
g(3)(kt ,z)
g(4)(kt ,z)

⎤

⎥

⎥

⎦

, (3)

for the upper Hamiltonian. Similar equation holds for the lower Hamiltonian HL
4×4(kt). At the

zone center (kt = 0), there is usually a dominant component among the envelope functions
which the band can be named after. For wide band gap materials, the CBs are weakly coupled
to the valence bands (VBs) and usually solved separately from the 6 × 6 Hamiltonian with
VB mixing [18], and the weak CB-VB coupling is included in the effecitve mass. In the 8×8
Hamiltonian for narrow band gap materials, the electron effective mass in the diagonal matrix
elements need to be corrected since the off-diagonal elements already include the coupling. The
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corrected effective mass, denoted by m′
c, enters into the eight diagonal matrix elements as,

〈u1,5|HLK
8×8|u1,5〉=Ec +Aε +

(

h̄2

2m0
+A′

)

(k2
t + k2

z ) = Ec +Aε +
h̄2

2m′
c
(k2

t + k2
z ),

〈u2,6|HLK
8×8|u2,6〉=Ev −Pε −Qε − h̄2

2m0

[

(γ1 + γ2)k
2
t +(γ1 −2γ2)k

2
z

]

,

〈u3,7|HLK
8×8|u3,7〉=Ev −Pε +Qε − h̄2

2m0

[

(γ1 − γ2)k
2
t +(γ1 +2γ2)k

2
z

]

,

〈u4,8|HLK
8×8|u4,8〉=Ev −Pε −Δ− h̄2

2m0
γ1
(

k2
t + k2

z

)

.

(4)

where Ec and Ev are the unstrained bulk CB and VB edges, and Δ is the spin-orbit split-off
energy. Aε , Pε , and Qε are the strain contributions, which are expressed explicitly in Eq. (A-2).

The corrected effective mass can be written in terms of Kane’s paramemter A′, which in-
cludes the momentum matrix elements between the s-like CBs and remote bands with Γ5 sym-
metry type [7].

A′ =
h̄2

m2
0

Γ5

∑
j

|〈S|px|u j〉|2
Ec −Ej

(5)

The original effective mass mc, which can be obtained from experiments, describes the curva-
ture of the eigen-energy dispersion. The expression [26, 27] for mc can be derived by solving
energy dispersion E(kt) near the zone center with expansion up to O(k2

t ),

m0

mc
= 1+

2m0

h̄2 A′+Ep
Eg +2Δ/3
Eg(Eg +Δ)

. (6)

Therefore the correction of electron effective mass from the experimental values is written as,

m0

m′
c
=

m0

mc
−Ep

Eg +2Δ/3
Eg(Eg +Δ)

. (7)

The Luttinger parameters obtained from experiments correspond to the Dresselhaus [28] defi-
nition, where the class-A states for Löwdin’s perturbation method [17] use the 6-fold VB bases.
However, for the 8-band LK Hamiltonian, the class-A states should be defined using the 8-fold
bases [7, 26, 27] including the two s-like CBs. Therefore the extra coupling term between the
s-like CB states and the p-like VB states needs to be subtracted from the original Luttinger
parameters [7, 26–29],

γ1 = γL
1 − Ep

3Eg +Δ
,

γ2 = γL
2 − 1

2

(

Ep

3Eg +Δ

)

,

γ3 = γL
3 − 1

2

(

Ep

3Eg +Δ

)

.

(8)

The original and the corrected material parameters are shown in Table 1. Values are updated
from [9] to include the corrections and the original parameters are within error margins in [29].
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Table 1. Input material parameters for the 8-band k ·p method
Parameter Symbol (unit) GaSb InAs InSb AlSb
Lattice constant (Å) a 6.0854 6.0522 6.4717 6.1297
Deformation potentials (eV)

ac -7.5 -5.08 -6.94 -4.5
av 0.8 1 0.36 1.4
b -2 -1.8 -2 -1.35

Elastic stiffness constant
(1011dyne/cm2) C11 8.842 8.329 6.847 8.769
Elastic stiffness constant
(1011dyne/cm2) C12 4.026 4.526 3.735 4.341
Band gap at 0K (eV) Eg 0.81 0.42 0.235 2.386
Band gap at 77K (eV) Eg 0.80 0.407 0.227 2.374
Electron effective mass mc/m0 0.0412 0.0224 0.0135 0.13
Corrected electron effective mass m′

c/m0 1.053 2.51 1.84 2.716
Luttinger parameters

γL
1 11.84 19.4 32.4 4.15

γL
2 4.25 8.545 13.3 1.28

γL
3 5.01 9.17 15.15 1.75

Corrected Luttinger parameters
γ1 4.86 6.30 16.78 1.76
γ2 0.76 1.99 5.61 0.085
γ3 1.52 2.62 7.46 0.55

Optical matrix parameter (eV) Ep 22.4 21.5 23.3 18.7
Spin-orbit split-off
energy (eV) Δ 0.81 0.38 0.81 0.65
Valence-band offset
energy (w.r.t. GaSb) (eV) VBO 0 -0.56±0.01 0.03 -0.38

2.2. Dirichlet boundary condition (DBC) vs. periodic boundary condition (PBC)

Let the thickness of one superlattice period be Lp and the total thickness with N periods be
LT = NLp. With DBC, the solution region is LT and the wave functions at both ends are set to
zero, or equivalently introducing infinite potential barriers outside the solution region.

g(i)m (kt ,−LT/2) = g(i)m (kt ,LT/2) = 0 (9)

With PBC, the solution region is Lp and the wave function values at both ends are related by
Bloch’s theorem. An extra quantum number q is introduced as a Bloch wave number qẑ to
account for the superlattice periodicity in z-direction. The PBC is formulated as,

{

g(i)m (kt ,z+Lp) = eiqLpg(i)m (kt ,z),

g(i)m (kt ,z+LT ) = g(i)m (kt ,z+NLp) = g(i)m (kt ,z).
(10)

The eigen-equation is obtained as,

eiNqLp = 1, and q =
2πn
NLp

. (11)
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Fig. 1. Wavefunctions at kt = 0 solved using the Dirichlet boundary condition (DBC) and
the periodic boundary condition (PBC). |g(1)| of the lowest C1 band (green) and |g(2)| of
the highest HH1 band (red) are plotted with C1 and HH1 band edges (blue dashed). The
zero energy reference is chosen as the unstrained conduction band edge of InAs.
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Fig. 2. Energy dispersion relation to transverse wave number. Blue dashed lines indicate
the band edge energies. The zero energy reference is chosen as the unstrained conduction
band edge of InAs.

where q takes N (or N +1) values in the first Brillouin zone (−π/Lp,π/Lp),

n =

⎧

⎪

⎨

⎪

⎩

0, ±1, ±2, ..., ±N
2

N is even,

0, ±1, ±2, ..., ±N −1
2

N is odd.
(12)

The solution region of Lp is solved for N (or N + 1) times with different Bloch phase shift
determined by q. The number of unknowns for PBC is N (or N + 1) times fewer than that of
DBC but the eigen-problem is solved for N (or N + 1) times. Since most eigen-solvers have a
complexity greater than O(N2), the computational cost using PBC is much less than DBC when
N becomes large.

After choosing the boundary condition, the coupled eigen-equations in Eq. (3) are solved
numerically using the finite-difference method. Using DBC, each subband (e.g. C1 or HH1) is
splitted into N coupled states, which is consistent with the coupled-mode theory. The band edge
energies converge as N increases. Using PBC, the band edge is determined by the q = 0 states,
where wavefunctions in one period are repeated in other periods without any phase change.

The dominant envelope functions (g(1) for CB, g(2) for HH) are plotted in Fig. 1. The zero
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energy reference is chosen as the unstrained conduction band edge of InAs. Comparing DBC
and PBC, band edge energies (blue dashed) agree well. The thin GaSb layers cause strong cou-
pling between electrons confined in the InAs layers. For DBC, this strong coupling brings forth
a slow-varying envelope that modulates CB wavefunctions, which is mathematically caused by
the infinite barriers at both ends. For PBC, the strong coupling effect is reflected in the large
non-zero mean value of the wavefunctions, even though the magnitude of the wavefunctions
repeats for all periods. Despite the difference in wavefunctions, the optical transition matri-
ces for DBC and PBC should converge, because the overlap integration can be approximately
separated into a product of two integrals, one over fast-varying part in a single period of SL,
and the other over the slow-varying part across the whole solution region. The average of the
slow-varying envelope is equivalent to the large non-zero mean when using PBC.

The energy dispersion relations E(kt) are shown in Fig. 2, calculated using 9 periods of SLs.
The assignment of the HH or LH band names is according to the dominant envelope function
at the band edge (i.e. g(2) for HH and g(3) for LH). The effective band gap and the band edge
energies for DBC and PBC agree well. For DBC, each subband is split into 9 coupled states,
which converge at higher kt . For PBC, each subband is split into 5 discrete energy levels because
of the double degeneracy among the 9 different q values (E+q(kt) = E−q(kt)).

2.3. Absorption and photoluminescence spectra

The optical absorption coefficient [10] in a quantum well structure can be derived from the
Fermi’s golden rule and expressed as,

α(h̄ω) =
πe2

nrcε0m2
0ω

U,L

∑
σ1,σ2

∑
n,m

1
LT

∫ 2π

0

dφ
2π

∫ ∞

0

ktdkt

2π
|〈Ψσ1,n

c |ê ·p|Ψσ2,m
v 〉|2

× [ f σ2,m
v (kt)− f σ1,n

c (kt)]L(kt , h̄ω),

(13)

where the Fermi distribution functions are

f n
c (kt) =

1

1+ exp(Ec,n(kt )−Fc
kT )

,

f m
v (kt) =

1

1+ exp(Ev,m(kt )−Fv
kT )

.

(14)

for electron occupation probability in the n-th conduction subband with an energy Ec,n(kt) and
the m-th valence subband with an energy Ev,m(kt), respectively. Fc is the quasi-Fermi level for
the conduction band electrons and Fv is the quasi-Fermi level for the valence band. (1− f m

v ) is
the occupation probability by the holes. The summation over σ1 and σ2 includes the transitions
among eigen-states of both upper and lower 4×4 Hamiltonian, and the spin degeneracy is also
accounted for.

Evaluation of the 8×8 momentum matrix elements, as suggested by Chang and James [15],
and Szmulowicz [14], is different from that of the 6×6 case [18], where the mixing among VB
states is included but not the mixing between the CB and the VB states. In the 6× 6 case, all
interband transition matrix elements are proportional to 〈S|pz|Z〉 since the CB states are purely
s-like and the VB states are mixtures of p-like states. In the 8×8 case, both the CB and the VB
states include the 8-band mixing and interband transition is allowed from p-like to p-like states.
Such a transition (e.g. 〈Z|pz|Z〉) is non-vanishing when Löwdin’s perturbation method [17] is
applied to include the remote bands denoted as class-B. Since the momentum operator does
not commute with the Hamiltonian, even the new bases {|ui〉} cannot simultaneous block-
diagonalize the momentum matrix. Such a dense 8×8 momentum matrix can be obtained from
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the Hamiltonian using the 1st-order k ·p perturbation,

p8×8 =
m0

h̄
∇kH8×8, (15)

since Hk ≈ H0 +(h̄/m0)k ·p. The gradient in Eq. (15) is expanded by the 2nd-order derivatives
of the Hamiltonian. Then the momentum matrix elements can be written as,

〈Ψσ1,n
c (kt ,z)|ê ·p|Ψσ2,m

v (kt ,z)〉= ê ·∑
i, j

∫

dz
(

g(i)n (kt ,z)
)∗ [m0

h̄
∇kHi j

]

g( j)
m (kt ,z), (16)

which is consistent with [15] and [14]. We further derive explicitly the 8×8 momentum matrix
elements for TE and TM polarizations in terms of the envelope functions in Appendix B.

The direction ẑ is chosen as the epitaxial growth direction of the T2SLs. Therefore in Eq.
(16), ê⊥ẑ and ê‖ẑ for TE- and TM-polarized optical transitions, respectively. For mid-IR ab-
sorption spectra, TE polarization is of main interest because of its major contribution among
top-incident light, especially near transition band edge, where normally HH1-C1 is dominating.

The lineshape function L(kt , h̄ω) uses the normalized Gaussian distribution to account for
a finite transition linewidth due to various scattering mechanisms, with γ being the linewidth
parameter,

L(kt , h̄ω) =
1

γ
√

2π
exp

(

− (Ec,n(kt)−Ev,m(kt)− h̄ω)2

2γ2

)

. (17)

Unlike absorption or stimulated emission where the net transition rate is calculated, spon-
taneous emission considers only the downward transition from the CBs to the VBs. It only
requires the initial state to be occupied and the final state empty, assured by the term fc(1− fv).
The photoluminescence (PL) spectrum is proportional to the spontaneous emission spectrum,

rspon(h̄ω) =
nre2ω

c3π h̄ε0m2
0

U,L

∑
σ1,σ2

∑
n,m

1
LT

∫ 2π

0

dφ
2π

∫ ∞

0

ktdkt

2π

|〈Ψσ1,n
c |ê ·p|Ψσ2,m

v 〉|2 f σ1,n
c (kt)[1− f σ2,m

v (kt)]L(kt , h̄ω).

(18)

The integrations over kt in Eq. (13) and (18) are performed numerically by truncating at a
finite range (kt = 0.2/Å). The lineshape function approaches zero rapidly when kt is large,
which indicates the high-kt transitions contribute little to the infrared absorption or emission.
For absorption in an intrinsic T2SL, the quasi Fermi-level separation is zero (Fc = Fv) and the
Fermi-level lies in the middle of effective band gap. Therefore the Fermi function difference
( fv− fc) is 1. For PL, low-level injection creates a small quasi Fermi-level separation but the two
quasi Fermi-levels are both deep within the gap. For gain spectrum, the population inversion
condition requires negative Fermi function difference ( fv − fc < 0) in order to have a positive
gain value. Therefore the injection level needs to be high enough to create a large quasi Fermi-
level separation (Fc −Fv). Gain is equal to negative absorption,

g(h̄ω) =−α(h̄ω). (19)

For both PL and gain modeling, Fc and Fv are related to the injected carrier density by,

n =
U,L

∑
σ1

∑
n

1
2πLT

∫ ∞

0
ktdkt f σ1,n

c (kt),

p =
U,L

∑
σ2

∑
m

1
2πLT

∫ ∞

0
ktdkt [1− f σ2,m

v (kt)] .

(20)
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To solve Fc and Fv using Eq. (20), we obtain carrier densities n and p from the charge neutrality
condition,

n+N−
A = p+N+

D , (21)

where N−
A is the ionized acceptor concentration, N+

D is the ionized donor concentration. The
carrier densities n and p can be found from n = n0 + δn, p = p0 + δ p, and δn = δ p, where
n0 and p0 are the electron and hole concentrations, respectively, at thermal equilibrium. δn and
δ p are the excess electron and hole concentrations due to electrical or optical injection. For PL
or low-level injection condition,

n0 =
n2

i

p0
� δn = δ p � p0 = N−

A −N+
D , for p-type,

p0 =
n2

i

n0
� δn = δ p � n0 = N+

D −N−
A , for n-type,

n0 = p0 = ni � δn = δ p, for intrinsic.

(22)

For absorption spectra at zero bias, the excess carrier injection is zero (δn = δ p = 0).

3. Simulation results and discussion

In this paper, we model the absorption spectrum and the PL spectrum for an intrinsic T2SL with
an InAs/GaSb 44 Å/21 Å layer structure. Specific interband transitions (e.g. HH1-C1, LH1-C1)
are calculated together with the total transition as shown in the inset of Fig. 3. The cutoff
energies for different types of interband transitions are consistent with the effective band gaps
between different subbands predicted from Fig. 2. The HH1-C1 transition turns on at around
130 meV in Fig. 3. The HH1-C2 transition appears at the second step of the HH1-to-all CBs
absorption curve (black curve in Fig. 3 inset), which agrees with the effective band gap between
C2 and HH1 subbands (470 meV) in Fig. 2. The LH1-C1 starts at around 300 meV, which is
the effective band gap between C1 and LH1 subbands. The peak of LH1-C1 transition appears
at 500 meV due to the large wavefunction overlap at this transition energy and the contribution
from higher kt states.

The external quantum efficiency (QE) of an InAs/GaSb 45 Å/24 Å T2SL photodetector is
modeled with different p-doping conditions, as shown in Fig. 4. We use a uniform doping in
the absorber, which can be well controlled during crystal growth. When the absorber region is
lightly p-doped, the quantum efficiency decreases slightly because more holes are introduced
in the VB. But the PL intensity increases with p-doping since the VB becomes increasingly
occupied by holes (the quasi Fermi-level for holes shifts to lower energy), and allows a larger
spontaneous emission rate. Since the doping is light and uniform, the problem of band distortion
should not be significant. The fact that the light p-doping does not change the cutoff wavelength
and only slightly affects the QE, one can use a lightly doped absorber region to reduce the dark
current and drastically improve the electrical performance of photodetectors.

Our theoretical results are compared with the experimental data in Fig. 5 and Fig. 6, show-
ing a very good agreement. The measured absorption spectra are converted from the quantum
efficiency (QE) spectra [19,20] for a mid-wave infrared (MWIR) detector with a 3.6 μm cutoff
wavelength and a long-wave infrared detector (LWIR) with a 12 μm cutoff wavelength. The
absorption coefficient is an intrinsic property of the designed T2SL while quantum efficiency is
a device-dependent property, which can be affected by doping concentration, device thickness,
minority carrier lifetime, minority carrier diffusion length, and so on. The absorption coeffi-
cient can be measured from the absorption difference between two identical T2SLs except with
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Fig. 3. Theoretical TE absorption spectra of an InAs/GaSb 44 Å/21 Å T2SL on GaSb
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(cross), NA = 2×1016 cm−3 (dashed), NA = 5×1015 cm−3 (solid).

different thicknesses, and the calibration is automatically included during the spectral response
subtraction. The minor spectral dips in the measured QE spectra in Fig. 5 and Fig. 6 are due to
the atmospheric absorption. The absorption data converted from measured QE follows our the-
oretical prediction for both MWIR and LWIR cases. The error becomes larger when wavelength
approaches cutoff partially due to the increasing difficulty in separating weak signal from large
noise fluctuation during measurement.

Small variations in material parameters and the layer structure become critical when model-
ing optical properties at long wavelength. A slight fluctuation in the input parameters, such as
the layer thicknesses and the valence band offset (VBO), can cause a large percentage change
with respect to the small transition energy. In LWIR range, even 5 meV change in the VBO
results in nearly 1 μm shift in cutoff wavelength, as shown in Fig. 6.
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InAs/GaSb 48 Å/22 Å LWIR T2SL on GaSb substrate. Both the periodic boundary condi-
tion (PBC) and Dirichlet boundary condition (DBC) are used and different valence band
offset (VBO) values take into account the interfacial effect if actual interfacial layers are
not included in the model.

One major difficulty of modeling semiconductor nanostructures with heterojunctions is the
determination of the band alignment and the VBO. One commonly used method is the model-
solid theory [30], where the unstrained valence band edges for all materials are measured from
an absolute reference. However, a large variation exists among reported experimental VBO
values obtained through different measuring techniques or by different researchers. Besides
experimental error, one of the major reasons is the imperfectness of the heterojunction formed
in practice. Interfacial layers are formed unintentionally at the heterojunction and will affect
the measurement of VBO and other optical properties.

In this paper, we include actual IF layers in our model to study their effect on optical prop-
erties. IF layers are forced at the heterojunction while the thickness of one superlattice period
remains the same. If the interfacial type between InAs and GaSb is InSb, the unstrained CB
edge for InSb is in between that of InAs and GaSb, and the unstrained VB edge is slightly
higher than that of GaSb, as shown in Fig. 7 inset. However, due to the large lattice mismatch
(∼ 6%) between InSb layer and GaSb substrate, the strain effect plays an important role in the
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effect.

band alignment. The large biaxial compressive strain shifts the CB edge in InSb higher by 377
meV, and also shifts the HH edge higher by 230 meV.

Assuming pure InSb IF layers can be intentionally grown between the InAs and GaSb layers,
the VB states in the T2SL are shifted to higher energies since the VB edge in InSb is much
higher than the VB edges in both InAs and GaSb. The change in the CB state energies is small
compared to the change in the VB state energies because the CB edge in InSb is still between
the CB edges in InAs and GaSb. As a result, the InSb IF layer shrinks the effective band gap and
increases the transition wavelength. Such effect can be observed from the red-shift of the PL
peak and the absorption cutoff wavelength in Fig. 7. In our model, we include IF layers at both
InAs-on-GaSb and GaSb-on-InAs interfaces. Practically, depositing InSb on InAs interfaces is
much harder than that on GaSb. If the IF layer is only deposited on one type of interfaces, the
effect of wavelength shift becomes approximately half of that on both interfaces.

There is normally a tradeoff between the cutoff wavelength and the absorption strength when
designing T2SL, but the InSb IF layers are able to simultaneously increase both properties, as
shown in Fig. 7. The absorption coefficient increases with InSb IF layer thickness because it
improves the wavefunction overlap between electrons and holes. Electrons tunnel more easily
through the interface and the hole-confining regions are effectively wider. As a result, the InSb
IF layer becomes a preferable region for electrons and holes to recombine. In reality, GaAs
or even ternary and quaternary compound IF layers can also be forced intentionally or formed
unintentionally during the crystal growth of the InAs/GaSb T2SL. Due to the large biaxial
tensile strain in GaAs on GaSb substrate, optical properties are affected in the opposite way as
by InSb IF layers. A wide tunable range of optical properties can be achieved by controlling
both the composition and the thickness of the IF layers.

4. Conclusion

We have presented a comprehensive model of the electronic band structure and optical proper-
ties of T2SL photodetectors using the 8-band k ·p method. The theoretical formulation for the
8-band Hamiltonian and the explicit expressions of the 8-band momentum matrix elements are
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included. Material parameters of Sb-based binary compounds commonly used in type-II struc-
tures are updated and summarized. Numerical results using two different boundary conditions
are compared, showing good agreement. Our theoretical results of the T2SL optical properties,
including the absorption and photoluminescence spectra, agree very well with the experimen-
tal data. Our model also explains well the doping-dependence of the quantum efficiency and
photoluminescence in T2SL photodetectors.

The interfacial (IF) effect in T2SLs is investigated using our model. Instead of adjusting VBO
to account for the IF effect, we include the actual IF layers in our model. IF layers are shown to
have a large influence on the optical properties in T2SLs. It is predicted that by precise control
of the IF layer component and thickness, we can achieve a large tunable range of the optical
properties in T2SLs and significant improvement of the T2SL device performance.

A. The 8×8 Luttinger-Kohn Hamiltonian in the k ·p method

After the basis transformation and axial approximation, the upper and lower parts of the block-
diagonalized Hamiltonian [9] can be written as,

HU
4×4 =

⎡

⎢

⎢

⎢

⎢

⎣

Ec +A −√
3Vρ −Vρ + i

√
2U −√

2Vρ − iU
−√

3Vρ Ev −P−Q Rρ + iSρ
√

2Rρ − i 1√
2
Sρ

−Vρ − i
√

2U Rρ − iSρ Ev −P+Q −√
2Q− i

√

3
2 Sρ

−√
2Vρ + iU

√
2Rρ + i 1√

2
Sρ

√
2Q+ i

√

3
2 Sρ Ev −P−Δ

⎤

⎥

⎥

⎥

⎥

⎦

,

HL
4×4 =

⎡

⎢

⎢

⎢

⎢

⎣

Ec +A −√
3Vρ −Vρ − i

√
2U −√

2Vρ + iU
−√

3Vρ Ev −P−Q Rρ − iSρ
√

2Rρ + i 1√
2
Sρ

−Vρ + i
√

2U Rρ + iSρ Ev −P+Q −√
2Q+ i

√

3
2 Sρ

−√
2Vρ − iU

√
2Rρ + i 1√

2
Sρ

√
2Q− i

√

3
2 Sρ Ev −P−Δ

⎤

⎥

⎥

⎥

⎥

⎦

,

(A-1)

where

A =
h̄2

2m′
c
(k2

t + k2
z )+Aε , Aε = ac(εxx + εyy + εzz),

P =
h̄2

2m0
γ1(k

2
t + k2

z )+Pε , Pε =−av(εxx + εyy + εzz),

Q =
h̄2

2m0
γ2(k

2
t −2k2

z )+Qε , Qε =−b
2
(εxx + εyy −2εzz),

Rρ =− h̄2

2m0

√
3(

γ2 + γ3

2
)k2

t =− h̄2

2m0

√
3γ̄k2

t ,

Sρ =
h̄2

2m0
2
√

3γ3k2
t , Vρ =

1√
6

Pcvkt , U =
1√
3

Pcvkz,

Pcv =
h̄

m0
〈iS| h̄

i
∂
∂x

|X〉=
√

(h̄2/2m0)Ep ,

εxx = εyy =
a0 −a

a
, εzz =−2C12

C11
εxx,

(A-2)

and m′
c, γ1, γ2, γ3 are the corrected electron effective mass and corrected Luttinger parameters

based on experimental values and Eq. (7)-(8). Pcv is the Kane’s parameter corresponding to the
momentum matrix element for s-state to p-state interband transitions, which is also represented
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by the energy parameter Ep. ac, av, and b are the Pikus-Bir deformation potentials that introduce
strain effect into the Hamiltonian. For quantum well structures, kz is replaced by the differential
operator −i∂/∂ z in the Hamiltonian.
The set of bases which block-diagonalizes the Hamiltonian is chosen as,

|u1〉= 1√
2
[|1〉e−iφ/2 + i|5〉eiφ/2], |u5〉= 1√

2
[|1〉e−iφ/2 − i|5〉eiφ/2],

|u2〉= 1√
2
[|2〉e−i3φ/2 − i|6〉ei3φ/2], |u6〉= 1√

2
[|2〉e−i3φ/2 + i|6〉ei3φ/2],

|u3〉= 1√
2
[i|3〉e−iφ/2 −|7〉eiφ/2], |u7〉= 1√

2
[−i|3〉e−iφ/2 −|7〉eiφ/2],

|u4〉= 1√
2
[−i|4〉e−iφ/2 −|8〉eiφ/2], |u8〉= 1√

2
[i|4〉e−iφ/2 −|8〉eiφ/2].

(A-3)

The original set of bases for the 8×8 LK Hamiltonian is:

|1〉= |iS ↑〉, |5〉= |iS ↓〉,
|2〉=− 1√

2
|(X + iY ) ↑〉, |6〉= 1√

2
|(X − iY ) ↓〉,

|3〉= 1√
6
|− (X + iY ) ↓+2Z ↑〉, |7〉= 1√

6
|(X − iY ) ↑+2Z ↓〉,

|4〉= 1√
3
|(X + iY ) ↓+Z ↑〉, |8〉= 1√

3
|(X − iY ) ↑ −Z ↓〉.

(A-4)

B. The 8×8 Momentum Matrix Elements

The 8 × 8 momentum matrix [14, 15] p can be derived from the 8 × 8 Hamiltonian under
the same set of bases, following Eq. (15). Each energy eigen-state can be expressed in terms
of basis functions weighted by envelope functions using k · p perturbation. The momentum
matrix elements for the transitions between two energy eigen-states are then evaluated. Our
contribution is to derive the general and explicit momentum matrix elements in terms of the
envelope functions, which can be readily used after solving the coupled Hamiltonian. The
results are shown as follows, where φ = tan−1(ky/kx).

〈Ψn,σ1=U
c |x̂ ·p|Ψm,σ2=U

v 〉= cosφ
∫

dz

{

h̄kt [
m0

m′
c
g∗1,ng1,m − (γ1 + γ2)g

∗
2,ng2,m − (γ1 − γ2)g

∗
3,ng3,m

− γ1g∗4,ng4,m −
√

3γ̄g∗2,ng3,m −
√

6γ̄g∗2,ng4,m −
√

3γ̄g∗3,ng2,m −
√

6γ̄g∗4,ng2,m −
√

2γ2g∗3,ng4,m

−
√

2γ2g∗4,ng3,m]−
Pcvm0√

6h̄
[
√

3g∗1,ng2,m +g∗1,ng3,m +
√

2g∗1,ng4,m +
√

3g∗2,ng1,m +g∗3,ng1,m

+
√

2g∗4,ng1,m]+

√
3γ3h̄
2

[g∗2,n
d
dz

g3,m −g3,m
d
dz

g∗2,n −g∗3,n
d
dz

g2,m +g2,m
d
dz

g∗3,n]

+

√
3γ3h̄

2
√

2
[g4,m

d
dz

g∗2,n −g∗2,n
d
dz

g4,m −g2,m
d
dz

g∗4,n +g∗4,n
d
dz

g2,m]

+
3γ3h̄

2
√

2
[g4,m

d
dz

g∗3,n −g∗3,n
d
dz

g4,m −g3,m
d
dz

g∗4,n +g∗4,n
d
dz

g3,m]

}

.

(B-1)

〈Ψn,σ1=L
c |x̂ · p|Ψm,σ2=L

v 〉 can be obtained by replacing gi,n with gi+4,n, gi,m with gi+4,m, and
d/dz with (−d/dz), based on Eq. (B-1).
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〈Ψn,σ1=U
c |x̂ ·p|Ψm,σ2=L

v 〉= isinφ
∫

dz
{

h̄kt [ −
√

3γ̄g∗2,ng7,m −
√

6γ̄g∗2,ng8,m +
√

3γ̄g∗3,ng6,m

+
√

6γ̄g∗4,ng6,m]+
Pcvm0√

6h̄
[
√

3g∗1,ng6,m −g∗1,ng7,m −
√

2g∗1,ng8,m −
√

3g∗2,ng5,m +g∗3,ng5,m

+
√

2g∗4,ng5,m]+

√
3γ3h̄
2

[g∗2,n
d
dz

g7,m −g7,m
d
dz

g∗2,n +g∗3,n
d
dz

g6,m −g6,m
d
dz

g∗3,n]

+

√
3γ3h̄

2
√

2
[g6,m

d
dz

g∗4,n −g∗4,n
d
dz

g6,m −g8,m
d
dz

g∗2,n +g∗2,n
d
dz

g8,m]

+
3γ3h̄

2
√

2
[g8,m

d
dz

g∗3,n −g∗3,n
d
dz

g8,m −g7,m
d
dz

g∗4,n +g∗4,n
d
dz

g7,m]

}

.

(B-2)

〈Ψn,σ1=L
c |x̂ ·p|Ψm,σ2=U

v 〉 can be obtained by replacing gi,n with gi+4,n, gi,m with gi−4,m, and
d/dz with (−d/dz), based on Eq. (B-2).

〈Ψn,σ1=U
c |ẑ ·p|Ψm,σ2=U

v 〉= i
∫

dz

{

−Pcvm0√
3h̄

[
√

2g∗1,ng3,m −g∗1,ng4,m −
√

2g∗3,ng1,m +g∗4,ng1,m]

+

√

3
2

γ3kt [
√

2g∗2,ng3,m −g∗2,ng4,m −
√

2g∗3,ng2,m]+g∗4,ng2,m −
√

3g∗3,ng4,m +
√

3g∗4,ng3,m]

− m0

2m′
c
[g∗1,n

d
dz

g1,m −g1,m
d
dz

g∗1,n]+
γ1 −2γ2

2
[g∗2,n

d
dz

g2,m −g2,m
d
dz

g∗2,n]

+
γ1 +2γ2

2
[g∗3,n

d
dz

g3,m −g3,m
d
dz

g∗3,n] +
γ1

2
[g∗4,n

d
dz

g4,m −g4,m
d
dz

g∗4,n]
}

,

〈Ψn,σ1=U
c |ẑ ·p|Ψm,σ2=L

v 〉= 0,

〈Ψn,σ1=L
c |ẑ ·p|Ψm,σ2=U

v 〉= 0.
(B-3)

〈Ψn,σ1=L
c |ẑ · p|Ψm,σ2=L

v 〉 can be obtained by replacing gi,n with gi+4,n, gi,m with gi+4,m, but
not replacing d/dz with (−d/dz), based on Eq. (B-3).

The y-polarized momentum matrix elements are different from the x-polarized ones only in
the φ -dependent terms. However, after the φ -integration in Eq. (13), both x- and y- polarizations
give the same TE transition rate.
〈Ψn,σ1=U

c |ŷ ·p|Ψm,σ2=U
v 〉 can be obtained from the expression of 〈Ψn,σ1=U

c |x̂ ·p|Ψm,σ2=U
v 〉 by

replacing cosφ with sinφ .
〈Ψn,σ1=U

c |ŷ ·p|Ψm,σ2=L
v 〉 can be obtained from the expression of 〈Ψn,σ1=U

c |x̂ ·p|Ψm,σ2=L
v 〉 by

replacing sinφ with (−cosφ) .
〈Ψn,σ1=L

c |ŷ ·p|Ψm,σ2=U
v 〉 can be obtained from the expression of 〈Ψn,σ1=L

c |x̂ ·p|Ψm,σ2=U
v 〉 by

replacing sinφ with (−cosφ) .
〈Ψn,σ1=L

c |ŷ ·p|Ψm,σ2=L
v 〉 can be obtained from the expression of 〈Ψn,σ1=L

c |x̂ ·p|Ψm,σ2=L
v 〉 by

replacing cosφ with sinφ .
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